Processing of nanolitre liquid plugs for microfluidic cell-based assays.

نویسندگان

  • Junji Fukuda
  • Shintaro Takahashi
  • Tatsuya Osaki
  • Naoto Mochizuki
  • Hiroaki Suzuki
چکیده

Plugs, i.e. droplets formed in a microchannel, may revolutionize microfluidic cell-based assays. This study describes a microdevice that handles nanolitre-scale liquid plugs for the preparation of various culture setups and subsequent cellular assays. An important feature of this mode of liquid operation is that the recirculation flow generated inside the plug promotes the rapid mixing of different solutions after plugs are merged, and it keeps cell suspensions homogeneous. Thus, serial dilutions of reagents and cell suspensions with different cell densities and cell types were rapidly performed using nanolitres of solution. Cells seeded through the plug processing grew well in the microdevice, and subsequent plug processing was used to detect the glucose consumption of cells and cellular responses to anticancer agents. The plug-based microdevice may provide a useful platform for cell-based assay systems in various fields, including fundamental cell biology and drug screening applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow.

Plugging a gap in screening—Arrays of nanoliter-sized plugs of different compositions can be preformed in a three-phase liquid/liquid/gas flow. The arrays can be transported into a microfluidic channel to test against a target (see schematic representation), as demonstrated in protein crystallization and an enzymatic assay.

متن کامل

Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.

This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single...

متن کامل

Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants.

Control of surface chemistry and protein adsorption is important for using microfluidic devices for biochemical analysis and high-throughput screening assays. This paper describes the control of protein adsorption at the liquid-liquid interface in a plug-based microfluidic system. The microfluidic system uses multiphase flows of immiscible fluorous and aqueous fluids to form plugs, which are aq...

متن کامل

Effects of viscosity on droplet formation and mixing in microfluidic channels

This paper characterizes the conditions required to form nanoliter-sized droplets (plugs) of viscous aqueous reagents in flows of immiscible carrier fluid within microfluidic channels. For both non-viscous (viscosity of 2.0 mPa s) and viscous (viscosity of 18 mPa s) aqueous solutions, plugs formed reliably in a flow of water-immiscible carrier fluid for Capillary number less than 0.01, although...

متن کامل

Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well plates for screening.

In traditional screening with 96-well plates, microliters of substrates are consumed for each reaction. Further miniaturization is limited by the special equipment and techniques required to dispense nanoliter volumes of fluid. Plug-based microfluidics confines reagents in nanoliter plugs (droplets surrounded by fluorinated carrier fluid), and uses simple pumps to control the flow of plugs. By ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science and technology of advanced materials

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2012